

JW-003-00497003 Seat No.

B. Sc. / M. Sc. (Applied Physics) (Sem. VII) (CBCS) Examination

October - 2019

Paper-II: Applied Quantum Mechanics

(New Course)

Faculty Code: 003

Subject Code: 00497003

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]

Instructions:

- (1) All questions are compulsory.
- (2) Numbers in the right margin indicate marks.
- 1 Attempt any seven short questions : (two marks each) 14
 - (1) What is box normalization of a wave function?
 - (2) Prove that $[x, P_x] = i\hbar$.
 - (3) Evaluate : $[f(x), P_x]$.
 - (4) Show that, $(\Delta A)^2 = \langle A \rangle^2 + \langle A \rangle^2$.
 - (5) Prove that:
 - (i) [A,B,C] = [A,B]C + B[A,C]
 - (ii) [AB, C] = A[B, C] + [A, C]B
 - (6) Explain: The azimuthal equation for a wave function of hydrogen atom.
 - (7) Find the solution and discuss the radial equation for a wave function of hydrogen atom.
 - (8) Show that the eigen functions of L_z form an orthonormal set.
 - (9) Show that $\left[L^2, L_z\right] = 0$.
 - (10) Prova that $[P_i, P_j] = 0$.

- 2 Write answer of any two:
 - (1) (a) If \hat{x} and \hat{p} are the position and momentum operators, 3 prove that commutator relation $\left[\hat{P}^2, \hat{x}\right] = -2i\hbar P$.

14

14

14

- (b) What is the operator correspondence? Derive the Schrödinger equation for a particle subjected to forces.
- (2) What is expectation value of an operator? Prove Ehrenfest's theorem.
- (3) Derive Schrödinger equation for a free particle in one dimension.
- (4) What are stationary states? Derive time independent Schrödinger equation.
- **3** Write answers of any two:
 - (1) (a) Prove that $\left[L_{X}, L_{y}\right] = i\hbar L_{z}$.
 - (b) Write a detailed note: the fundamental postulates of wave mechanics.
 - (2) The state of a particle in a box of length L is describe by

$$\psi = \sqrt{\frac{2}{L}} \sin \frac{n\pi x}{L}; \quad n = 0, 1, 2, \dots$$
 Calculate the uncertainty product $\Delta x \Delta p$.

- (3) Explain in detail: the Schrödinger equation and the probability interpretation for an N particle system.
- (4) Write a detailed note: The adjoint of an operator and self adjointness of an operator.
- **4** Write answer of any two:
 - (1) (a) Determine the eigenvalue of the parity operator P which is defined as $P\psi(r) = P\psi(-r)$.
 - (b) Explain the separation of variables of partial differential $\mathbf{4}$ equation for wave function ψ of the electron in a hydrogen atom.
 - (2) Derive an equation of energy eigenvalue of the Schrödinger equation for a simple harmonic oscillator.
 - (3) Write a detailed note: The angular momentum operator.
 - (4) Derive partial differential equation for a wave function of the electron in a hydrogen atom.

- 5 Write answers of any two:
 - (1) What is perturbation theory for discrete levels? Derive equations in various orders to perturbation theory.
 - (2) Discuss the first order solution of perturbation theory for the non-degenerate case.
 - (3) Explain the effect of an electric field on the energy level of an atom with necessary equations.
 - (4) Explain the Hamiltonian of two electron atoms in detail and derive the equation for ground state energy.

14